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The method of averaging is applied to study the reduced evolution of a quantum
open system. Successive approximate evolutions are derived, and they are shown to
be asymptotic to the exact evolution of the open system, under conditions which
are satisfied in the case of a system coupled to a quasi-free reservoir, whose
correlation functions are exponentially descreasing in time. 1985 Academic Press.
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I. INTRODUCTION

In this paper we apply the averaging method described in our previous
paper [1] (hereafter referred to as I) to the problem of the reduced
evolution of a quantum open system. We have in mind the usual class of
models [2 57: a spatially confined system S, with Hilbert space i, is
coupled to an infinitely extended reservoir R in a fixed reference state wp,
which we may represent by a cyclic vector Q in the GNS space .#,. We let
4 be the Banach space of trace class operators on #® #,; we start with
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ASYMPTOTIC EVOLUTIONS, II 3t

initial data f,, in the subspace 4, =.7 (#5)® |2)(2]. and we let f, evolve
in the interaction picture. by putting

=10 Vit foe Ay 120, (1.1)
where
Vib=expl —iH, t]1hexp[iH;t]. he 4. teR.

and where
H,=H® |+ 1. @Hy+H,,

H (resp. H,) being a self-adjoint operator in #, (resp. #x). H, is sup-
posed to annihilate Q:; we shall come later on to the conditions that the
interaction Hamiltonian /, must satisfy. Then we project /(1) back into
A, with a projection operator P, given by

Pofr(t)=trpl f{1)} @ 12)Q]. (1.2)

trgl -} denoting the partial trace over .#,. We want to find a simple
approximate expression for P, f*(t), which is valid for small 4 and large ¢.

Traditionally, this problem has been studied with the use of the
generalized master equation (GME), of the form (cf. [2, 3] and references
quoted therein)

Pof0)=fot 22| U [l ‘K’v(mdu} UPof s)ds,  (13)

“0 v

where U, p=exp[ —iH s] pexpliH¢s]. and where the integral kernel
K*{u) has an explicit expression as a power series in 4. It seems very dif-
ficult to do something both concrete and rigorous with the GME, which
retains memory of all the past history of the system. A great simplification
is obtained when the GME is approximated by replacing j{, * K*(u) du with
¢ K*(u) du; the Markovian master equation which then results is expected
to give a good approximation when the characteristic relaxation time t, of
K*(u) is much smaller than the typical variation time t of P, f*(r), which
is of order 1/i’t,. The rigorous theory of the weak coupling limit [2]
asscrts that, under suitable conditions, there is a time-independent and 4-
independent operator G on A4, such that

lim | sup [|Pyf (1) —exp[A°Gr] foll} =0 (1.4)

A0 g i g

for all /, in 4, and all T in [0. ¢ ); we have

] ~T o
G= lim _J U D K”(u)du:| U. ds. (1.5)
T/

s “0
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In this paper we shall be concerned with the problems of finding a more
detailed estimate of the error in (1.4) and of investigating corrections of
higher order in 4 to exp[A°G1] f,.

Among the conditions needed to prove (1.4), there is that
Py([H,. fo]1)=0 for all f, in A,, so that

d .
EPo.f(f”, ,,(,:O.
Since, on the other hand, we have
d L . o
—exp[AGt]fyl, o= r"Gfy,
dt

the best estimate we can hope to obtain in place of (1.4) is

sup  [Po /(1) =exp[A°Gr] fol < 22Bo(T) I foll (1.6)

0 22s 1

for some positive function fi,(-), bounded on compacts. The same con-
siderations hold also if one adds some corrections to G, involving higher
powers of ~.

It is then clear that, in order to improve the approximation in (1.6), it is
necessary to correct the semigroup behaviour, at least for short times, by
keeping somehow into account the memory effects which are present in the
GME. The method of averaging (I and references quoted therein) provides
a convenient alternative approach to the problem, which yields at the same
time higher-order terms in G and short time corrections to the semigroup
behaviour.

We find it useful to give an idea of the general scheme by presenting a
formal derivation (cf. [6] and I). Put

fHN =1+ F(1))yexp[G'1] [y,

where F*(1) is an operator from 4, into 4, and G is a time-independent
operator on #4,; then one has

if‘(z):[(l+F‘(r))G"+F"(t)]e" "t (1.7)

This has to be compared with the differential equation which is equivalent
to (1.1),

if‘m: CALH A, ] = AA(0) fA0. (1.7)
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where H,(1)=exp[iH,t] H,cxp| —iH,t]. 1dentifying (1.7) and (1.7} gives
G+ F(1y =7 A(1) Py + 2 A(1) F/ (1)~ F*(1) G (1.8)

If we try to solve (1.8) by using formal power series
F}.(,): Z /:I”F(M)(f)., G}.: Z /'VmG(m)’
o= =1

and equating terms of the same order in A, we get the hierarchy of
equations

G+ FU(1) = A(r) Py,
G(m)+F(m]([):A([)Flm l)(,)

o

Z Fonon (‘l” m=23,. (19)

el

Then, supposing (1.9) to be satisfied, we have
Pof ()= (14 Py FA1))exp[G1] f,. (1.10)

The operator P,F*(1)= M"(r) expresses the deviation of P,f*(¢) from
exponential behaviour. It represents a “non-Markovian™ correction, in that
it describes memory effects, although in a more schematic (but more useful)
way than the GME (1.3). We use the remaining freedom in the choice of
G, F(1) satisfying (1.9) to require that this correction remains small for
large 1, order by order in A, by asking

lim (1/1) Py F'""(1)=0 forall m=1, 2. (1.11)
Together with the initial condition F"(0)=0 for all m, this requirement

determines the solution of the hierarchy (1.9) uniquely. If we define an
averaging operation & on time-dependent operators on # by

&(B)= lim —} Py B(s) Py ds, (1.12)
we can express Eq. (1.11) as &(F")=0, m=1,2,.., so that G is deter-
mined by applying & to the right-hand side of (1.9), provided, of course, all
the integrals and limits involved exist.

We shall consider a class of models for which G" and M = P,F"!
are non-zero only for m cven, giving an expression for P, f*(¢) of the form

Pof A =t + M2 () + ) exp[(Z2GH + 226 + )] fo. (113)

630 45 4.2
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The formal power series for G and M“(r) are not likely to converge; it
may also be the case that G™'. M*"(1) cxist only for m smaller than some
fixed n. In order to produce rigorous theorems, we shall proceed as in I,
and prove estimates of the form

Pt () —exp[ TG Sl << A BAAT) | ol (1.14)
[P A — (1 + 22M (1)) exp[(2°G + 22 G ] £
AP o) (1.15)

where f1,(-), n=2. 4. are positive functions, bounded on compacts.

To prove these estimates we shall need some extension of the general
theory of 1. which we give in Section 2. In Section 2 we discuss also a dif-
ferent version of the averaging method (which is applied, for instance, in
[7]). where P, /“(1) is regarded as consisting of a slowly varying part
exhibiting a semigroup evolution. about which small, rapid oscillations
take place. In Section 3, we prove that the conditions stated abstractly and
used in Section 2 are indeed satisfied for the usual class of models [2-5],
where a spatially confined quantum system (or an N-level system) is
coupled to a quasi-free reservoir, consisting of Fermi, Bose, or classical
Gaussian fields, with an interaction Hamiltonian H, which is linear in the
reservoir field operators. However, for technical reasons, we need the con-
dition that the two-point correlation functions in the reference state of the
reservoir operators appearing in H, are exponentially decreasing in time, in
analogy to I. Some simple illustrative examples, with an explicit calculation
of G, M"™(1). and G'*'. are given in Section 4. Other applications of the
averaging method to quantum open systems may be found in [7, 8]; for
those models, the technical condition of exponentially decreasing
correlation functions is not satisfied.

We conclude this Introduction with a few remarks. The lowest-order
non-vanishing term G'' in G* coincides with the operator G of the weak
coupling limit theory of [27], hence the estimate (1.14) provides the desired
“best bound™ (1.6} on the error of the weak coupling approximation. The
estimate (1.15) gives the next correction in what looks like an asymptotic
expansion of P, f*(t) in (even) powers of /. It seems that higher-order
estimates could in principle be obtained under the same assumptions, but
the expressions under consideration become complicated very rapidly as
the order of the approximation increases.

A more detailed analysis would show that the “asymptotic expansion” of
P, (1) is actually in even powers of 4i/x, where % is the decay rate of the
exponentially decreasing correlation functions of the reservoir. Notice that
(A/%)" is just the ratio 7,/7, of the two characteristic times in the GME
(1.3); the smallness of this ratio is the essential ingredient in all (both non-
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rigorous and rigorous) discussions of the GME; see [3] for a list of
references.

2. GENERAL THEORY

As in paper I, we let # be a Banach space, %, a closed subspace of 4, P,
a norm one projection of # onto %,, P, =1— P,; let tr— A(t) be a strongly
continuous function on R* with values in ¥ (#), and consider the differen-
tial equation in .4

‘—l,/"(t):/”,A(z),f'”‘(r), 120, (2.1)
dt

depending on a parameter A€ [0, A]. Given the initial data f, in 4, the
unique continuous solution on [0, oc) is given by

[Hty=UN10) f, >0, (2.2)
where

Alu) du

~l

U*(t,s)= Texp [/Z

=Y A JJ Alwy) - Alw,) du, - du, . (2.3)
=0 [ TN PP

As explained in the Introduction, we assume f*(0) = f, to be in #4,, and we
look for an approximate expression for P, f”(t), of the form

vy =(1+M;, (1) exp[Gt] fo. (2.4)
where
G:,: Z /*imG(mn (25)
nr=1
n-1 a |
M. ()= Z MU = Z AP FUM(1), (2.6)

et nr =1

and where F'"(1), G'"" satisfy the hierarchy of equations (1.9), subject to
condition (1.11), and with initial condition F"(0)}=0 for all m. As in I, we
shall only consider n <4. We put

A D=P AP, i j=0,1,120, (2.7)

and we make the following assumptions:

(a) UMt s)=1forall 1>5=0:
(b)y PyA(t))--- Alts, ) Po=0forallm=0,1,.and ¢,..., 15, ,,20;
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(¢) there are time-dependent operators U,, K''(1), K'*(1) in #(4,)
such that
m(f ) A )= U nKll'(’l = 13) L’.r_»- (2.8)

H Ao (1) Ay A () Ayoly) dry dt

VO Ly ey

—U K9~ 1) U, (2.9)

where U, 1s given by a serics

=Y e, 1eR, (2.10)
A

10, being a sequence of operators in /’(A’O) such that 0, Q,=0d,,0, and
> .0, =1 (strong convergence), and {w, | being a sequence of distinct real
numbers, with inf}|w, —o,[:k#/1} =35>0

If U, commutes with K(s), K'*(s) for all #in R and 50, we are in the
situation described in 1. The generalization that we are considering here is
made to allow the description of the class of models mentioned in the
Introduction for which {U,:reR} is the Hamiltonian evolution of an
isolated spatially confined quantum system.

Because of assumption (b), G'" and P, F'"'(t) vanish for m odd, so that
the hierarchy of equations (1.9), up to order » =4, becomes

FU 1y = A1) Py
G 1)y = Alr) FU(1)

. ) ) {2.11)
FO 1 = Al F2U) — FO(1) G2
G+ FH () = A1) FO) — FR) G2
As in I, we assume the “(|¢,}, 2)-mixing condition™:
(d) there arc positive constants {¢,:n=0, 1. 2...}, x such that:

(1) the series Y/ a2 Yy Ca. 2 have infinite radius of
convergence:
(i1) J‘ Ao () Aoy ) A (w,) Rm“ ) de,, - dv,

o] e Ty s

<eu—s)" expl —xlu—s)], m=2,4,

for all n=0, 1., where [n/2] is the largest integer not exceeding n/2, and
where

Ri(s)=Als) F™'(s)— Y Y are m TF(s) G,

p bg-m+1 p

m=2,4; (2.12)
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(i) K2 <k, e ™ KO <k (t/a)e ¥, 120, for some
positive constants k, and k.

Conditions (a), (b), (c), (d) will be assumed throughout this section,
without explicit mention. We put

Ky =0,K"(1)Q,,  m=2,4,1=0. (2.13)

THEOREM 1.  The solution of the hierarchy (2.11), subject to condition
(1.11) and with F"(0) =0, exists and is given by

G''=GP =P, F"(1)= P, F3(1) =0, {(2.14)
GP= -y J“ K2)(1) dr, (2.15)
k

0

A

M2 (=Y {J ’ Ka(s)sds+ | (1—s5) K3\(s) ds}
~ LYo

v

[

+ L(l~e oty K@) ds, (2.16)

k=t Pk — Wy

G = [G(Zl’ MQ)] + 6(4)’ (2'17)
where M is the time average of M'3(1):

[

M=% [/ K2(s)sds+ Y.

£ t0 k!

f" K2(s)ds,  (2.18)
0

Wy — @y
and

j’ K1) dr — j K2 (s)s ds J T K2 dt}

0 0 0

G“":Z{

K

{

[7 7 Ky v ki) dsdr (2.19)
y=0vr=0

PO )

Proof. We have

G = tim = [ | A 0) Avls) ds i
= lim — A S
T — x T t=0v5=10 o 10

1 er |
- — lim — j j Y e Hen ot KOy du di,
T — (=0

u=0 g
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The terms with k =/ give (2.15), and those with & #/ vanish in the limit as
17— oc. Then we have

MO =Y [ K@) duds

LoV E0 sy

ar o

il ol u) (2 .

-2 “| Ue Bty KO () du ds,
ot T U

which becomes (2.16) with some change of variables.
The hierarchy of equations (2.11) gives for G’ the expression

T s

l A ~l
G*Y'= lim = { U KM —s)yU,ds
T TJ[ 0 J\fo ’ ( e

U LK) UM s) ds

Yy o0

~f ~N

+ l J U KP(t—u)U,G'"* du ds~M'3’(l)G(2’} dt
Yy=0Yu—0

(cf. T). It is clear that the first and the third terms in this expression give the
first and the second contributions to (2.19), respectively. The fourth term
gives — MG, and the second gives

S . 1 77 o
G-'MY — lim =

T - T‘/I —0Y =0

U Kt s) U, AMs) ds dt,

where AM'?(s)= M (s)— M" contains a part which vanishes exponen-
tially fast plus an oscillatory part. The first part gives no contribution in
the limit as 7 — o, by a change of variables and Lebesgue’s dominated
convergence theorem. It remains to consider (with a change of variables
f—s=r)

) ] AT i(’ ey - wplt
lim — —dt
- TJ o Wy — W,

()l((')/ e K};\ZJ( v )
v 0

~r r
fleng = v + 1) (2 s
% ' etn T o O ) du d.

Yu--0

Only the terms with j =/ survive in the limit, giving the last contribution to
(2.19).
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Now we prove the approximation theorem. Put

¥y = yi(0) =exp[2G71] . (2.20)
Xi(1) = exp[(A2G + 4G £, (2.21)
Vi) = (1+ 2M2(1)) x4(1), (2.22)

where f, is in 4,, and where G*', M)(1), G are given by (2.15), (2.16),
(2.17), respectively.

THEOREM 2.  There exist positive functions f,(-), n=2,4, bounded on
compact intervals, such that

IPof (1) =yl S A"B(A%1) sup [xj(s)l,  n=2.4,  (2.23)

Oy

Jor all t=0 and all 4 in [0, A].

Moreover, if the coefficients {x, | ffl the ({c,}, a)-mixing condition satisfy
Cons Con g 1 S Cok"/n), where k < (a/2)", then the functions §, can be put in the
form f,(ty=a,+b,t, a,, b,>0, n=2,4; and there is a constant ¢ >0 such
that

1Po f A1) = x40 < A%c + by a't) sup [xi(s)] (2.24)

Oss<y
for all t=0 and all 4 in [0, A).

Proof. When U, commutes with K")(s), n=2, 4, for all 7 in R and
520, this follows from Theorems 1 and 2 of 1. The additional complication
of oscillatory terms if U, does not commute with K"'(s) is only reflected in
the form of G, M?'(r), G**'; its effects are given in Theorem | above. The
norm estimates on the errors are not affected by the presence of the
1sometries U,, and they are derived in the same way as in L.

Comparing Theorems 1 and 2 here with the corresponding results of I,
we see that now the problem has three characteristic times: the inverse
coupling constant 1/4, the decay time 1/x of the reservoir correlation
functions, and the characteristic time 1/6 for oscillations in the system,
defined by é =min{|w, —w,|: k#/}. Norm bounds on G*, G'*', M**(1)
are of the form

NG < ks(Aja) At
ANGHN 1 G <20 (K2 + k)(A/a) + k3232 8] A, 24
AENMOOY < k(A (Afx + A0), ( )

AIMP() = M <k [(Aa+ 2/d) e * 4+ Aad].
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Hence the coupling constant 4 has to be small in comparison to both « and
o, in order for the estimates of Theorem 2 to be of interest.

As in paper I, the well-known results of the weak coupling limit theory
[2] can be recovered from our estimate (2.23) for n=2; we obtain

lim ||P, f*(t/2%) —exp[GPt] fo =0 (2.26)
s )

uniformly on all compact intervals 0<t<rt,. As a consequence,
exp[G'?'1] is a contraction for all positive 7, being a limit of contractions;
and the estimate (1.14) of the Introduction follows. Similarly, (1.15) would
follow from (2.23) for n =4, if we know that exp[(G'* + A°G'¥)r] is a con-
traction for all positive 7; this will be the case in the applications we shall
consider; in the general case, an estimate of the form (1.15) follows if
B.(A%1) is replaced by B,(A%1)exp[ A%t |G+ A2G™||].

It is sometimes useful to regard P, /(1) as given by a slowly varying part
X*(1), exhibiting a semigroup evolution, about which small, rapid
oscillations take place; it is then argued that only the rate of change of
(1) is accessible to measurement (for instance, this is the point of view
taken in [7]). In the present framework, this picture can be substantiated
as follows: we replace P, f“(r) with its approximate expression yj(1), we
split M‘?)(t} as its time average M’ plus an additional term AM‘?'(¢), and
we commute (1 + 4°M'?) with exp[(A°G" + A*G")¢], taking into account
the (in general non-vanishing) commutator between G’ and M'®. The
slowly varying part of y;(7) is then obtained by neglecting the term con-
taining the rapidly varying, zero-average expression 4M (1),

THEOREM 3. Ler A be strictly smaller than |M'?||. Then there is a
positive function (), bounded on compacts, such that

1Po (1) = (14 22 AM 1)) 5000 < A Bo(221) | foll. (2.27)
where AM(ty= M3 (t)— MY, and where
FU) =exp[(A2GP + A G )1 + 22 M) £, 1=0. (2.28)

Proof. 1f A2 { M| <1, then (1 + +*M") ! exists and is given by a
convergent power series expansion. The quantity y,(r) may be rewritten as

Vi) =1+ 2 M2 ()) (1 + A2 M) !
x exp[A20(1 4+ Z2MONGD + 223G (1 + 2202) Y1+ A2 f,,.
Now we have

[T+ 22MPN1 4+ A2MP) P — (1 4+ 27 AMP(1)))] = O(4),
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unformly in ¢, and

(1 4+ 22MNG? + 26N (1 + 22M)
— {G(Z)+/12(G(4’+ [ﬂ_f‘z), G(Z)])}H — 0(/14)’

so that, using (2.17) and the usual kind of estimates for the approximation
of semigroups (cf. [11, Chap. 1X, Sect. 27), we find

T ya(e) — (14 22 AM' (1)) ¥i(1)| < A*(const) exp[ A*t(const)].

as required. The exponential bound could be replaced by a linear bound, of
the form <A%(a,+ A%th,), if the operators G'* + G, G'* + A°G"* were
generators of semigroups of contractions, and this will be the case in our
applications.

The expression %;(¢) given by (2.28) is interpreted as the slowly varying
part of P, f*(z), up to fourth order in A It obeys a semigroup evolution
law, with generator A2G**’ 4+ A*G'®, and with a shifted initial condition
(1+A*M?) f,. Notice that the difference between P, f“(t) and (1) con-
tains a term of order 4% which is neglected in various applications on the
grounds that it is rapidly oscillating (cf. [7]).

In [7] the expression of A°G'+ 4*G'* is derived assuming the system
and the reservoir to be mutually uncorrelated in the remote past
(F'"(t) > 0as t » —ac). Here we show that both procedures give the same
result.

THEOREM 4. The expressions (2.15), (2.17) of G?', G may be obtained
by solving the hierarchy of equations (2.11) subject to the conditions

E(GYy =G, E(F") =0, FU(1y >0  asti— —oo,  (2.29)

N

provided one interprets m, |, ¢
real w #0).

in the sense of distributions (=0 for

Proof. We repeat the computations of Theorem 1, with the new con-
dition on F'(1). Then F")(1)=[" , F'")(s)ds, where [* , ¢ ds is inter-
preted as e/iw for all real w #0. So we have

7 . l T rr
G = lim - | J Aoy (1) Ayols) ds dr.
’ 0vy=
We put v =1—s; then u goes from 0 to oc, and we get

1 77 o
GP=—lim | | Ye K w)dudr (230)

s LY=o du0 7y,
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The terms with A =/ give (2.15) again, and those with & #/ vanish in the
limit as 7 — . We have also

T Y

M )= ’ ['\ Am(s)A,O(u)a'u—G‘:’} ds

ot o
AJ | Z e ok et "’K}f,’(v)dv ds

§ = /“r*()k?‘/

/ ay
- ! PRI w)_/)/J PRETNIE K}j’(v)a’v.
W, —w 0
kol Tk /

which is the long time behaviour of the oscillating part of (2.17). Then
M"“'=0, and

| 1 y
GW = lim — ' {J U KMt—s) U, ds

r-a TVizg v= 4
r , 5 i t L
+ ‘ U _\K(h}(l—‘s‘) U, Z B ‘ e M wiis "K}\,“;’(U) dv ds
Y I k#_/wkgw/"()
~f "~y 5 5
+ | | U KP(t—uw)U,G" du ds} dt.
. A7 7.

We compute separately the three functions of ¢ to be averaged. The first is

Ny
ZJ e on e “'K}j’(u)du.

Kk Cu=0

like in (2.30); the second is

o s ) , l'é,l(w/\ [ R
Y | e e K2 ) ———— K{3(0) do dt

Jhtk £y Se=0"r-0 Dy — Wy

and the third is

‘ v uKm(l*u) Uu(I*H)Gmdu

~
AZ‘ e tew oo "KLZ,'(;S').S‘GQ'(I'S.

ki vy=0

The only terms surviving the average operation are those with A =/ in the
first and in the third functions, and those with j=/in the second function.
The result is exactly (2.19).
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3. ESTIMATES

As is the case for the weak coupling limit theory [2-5], with the only
exception of [107], we are able to check the required mixing conditions for
the reservoir only when the latter is quasi-free. We shall only consider a
coupling H, which is linear in the reservoir field operators; we shall discuss
first the fermion case, where H, is bounded.

Let (Z, be the Clifford algebra over a complex Hilbert space ¥,
generated by bounded self-adjoint field operators {¢(v):ve ¥} satisfying
the anticommutation relations

d(v) p(t") + P(v') p(r)=2 Re(r, )1 for all v, ¢ in ¥, (3.1)
Let w, be a quasi-free state on (7 ,, with correlation functions

(UR(¢(U1}' o ¢(v2m+ 1 )) :0

for all m=0, 1,... and for all v,,..., v4,,.; In 7 ; (3.2)

(UR(¢(U1 ) e ¢(U2m))

= Z Sgnp n (UR(¢(U[7(2(/ l))(p(vrnllql))

pPE-Ay g=1

for all m=1, 2.... and for all v,...,, v, In ¥, (3.3)

where # is the set of those permutations p of {l,.,2m} such that
p(2g—1)< p(2g) and p(2q—1}< p(2¢+1) for all ¢, and sgn p is the
parity of the permutation p.

Let also {T,:7e R} be a strongly continuous group of unitaries on ¥,

such that

wrld(T,0)d(T,¢"))
r(B(v) d(r")) forall¢, ¢ in ¥ and all 7 in R. (3.4)

Then let (A, mg, Q) be the GNS triple associated to the state w, on
(! .. We identify (¢, with its image under ng, and we write simply @ for
Q. There is a self-adjoint operator H, in #% such that H,Q =0 and

exp[iH ;1] ¢(v)expl —iHzt]1=o(T,v) forall v in ¥, ¢in R (3.5)

Let #, be a separable Hilbert space. We interpret (7 (= ¥ (H#s) as the
algebra of observables of the system S, and (7, as the algebra of obser-
vables of the reservoir R.

Let H. be a self-adjoint operator in .#,, whose spectrum is pure point
and has no finite accumuiation points. Let {X,:j=1,.,r} and
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tv;0 /= 1l...r] be finite collections of bounded self-adjoint operators on #,
and of vectors in 7 | respectively, and put

H=Y X,®d(c) (3.6)
i1
then H, is a bounded self-adjoint operator on #(® #;.
Then we may proceed as stated in the Introduction. Equation (1.7)

holds with

ANf =i Y [ X e "NQ@T,e). [T, feA (3.7)
;o1

Put
Xry=e""X, e Jj=1l..rtehR, (3.8}
Ity ={Ple) pT,0,)> =wpldle) ¢(T,v,))
=h,(—1), ij=l..rntelk (3.9)

We identify 4, = .7 (#) ® |Q2)(£2| with .7 (#). Tt is clear that conditions
{a). (b), (¢) of Scction 2 hold, with

l*"vr/) —¢ 1t p ()/”\’. pE J/—(”\). le [Q, (31())
K2 (p= =Y [X{10), pX,]1hi{1) +hec., (3.11)
=1
K9= Y | | X X)X X
AN I AN

% U= 1) R — ) i — 1) —5)
— [ XA0) X0) X)) p X QU)o — 8) — hy(u— 1) hy(s))

— [ X)) XY XppX )] h (e =) b —s) — B (—1) hy (s — u))
— [X ) Xolw) X, pX(s)]

X (hylu—10) i —s)=hy(—t) hy(u—3s))+he | duds, (3.12)

where p is a sclf-adjoint element of .7 (#), 1 =20, and where h.c. denotes
hermitian conjugate.

The above considerations remain true, with minor modifications, also in
the case of an unbounded Hamiltonian H, of the form (3.6), for which the
operators ¢(v,) are classical Gaussian variables, or Bose field operators
satisfying the commutation relations

d(v) ple ) —(v") o) =20 Im(z, ') forall v,¢v"in #. (3.13)
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In any case, the ¢(v) are densely defined self-adjoint operators in a Hilbert
space #,. with a cyclic vector £2 which is in the domain of all monomials
d(ry) d(v,); putting wg(- ) =(2,.. Q2), (3.2) still holds, and (3.3) holds
with (sgn p) omitted. We also assume (3.4) to be true, then (3.5) holds.

Then all the theory of 1 and of Section 2 above remains valid (cf. L
Remark A), the reason being essentially that the expansion

Pofi=fo+ X [ ] PoAt ) Aln,) fydt, i,

v
n—=1 e 20y

is well defined and convergent for all f; in 4,, 1 >0. The operators U, and
K'(1) are still given by Egs. (3.10) and (3.11), respectively, and K'*'(1) has
an expression which is similar to (3.12), but contains (A,( —1) b, (u—s)+
hy(u—1)h,(—s)). and similar expressions instead of the analogous
expressions with a minus sign.

It remains to find conditions aliowing one to prove ({c, . %)}-mixing.

THEOREM 5. For a spatially confined quantum system coupled to a quasi-
[ree reservoir ( fermion, boson, or classical Gaussian) by an interaction of the
Jorm (3.6), the ({¢,}, 2)-mixing condition holds if there are positive constants
K and % such that

(T o) (T 1) )]
<wexp[ —alr—s)], ioj=l,rt seR; (3.14)

and the coefficients [c¢,| satisfy the bound
Cope Con g1 S o) B8RP LX) 4 6) 27 ]/nl, (3.15)
where £>0 and | X =max X, j=1...r].

Proof-  The proof is essentially the same as for Theorem 5 of I, but some
additional care is needed because the field operators ¢(v;) need not com-
mute with each other. Here we shall refer largely to the proof in I, and we
shall only discuss the modifications which are needed.

Part (iii) of the mixing condition holds, because of the explicit form
(3.11), (3.12) of Kr), K*(r), and because of the exponential bound
(3.14) on the two-point functions.

In order to prove parts (i) and (ii), the method of I (Theorem S and
Appendix) can be used, provided onc shows that

(A1) Ayt Aye,) Aol )|

§(4’\'rl HXHz)”~ ‘ Z I_I cxp[ia([/>(lq)7l/>{2¢/+1))]* (316)

pe#,q 0O
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where #, is the set of those permutations p of {0,.,2n+ 1} such that
P2gy< p2q+ 1), p(2q) < p(2g + 2) for all ¢ and such that for each m in
1. 2n) there is at least one ¢ = ¢(m) such that p(2g)<m, p(2g+1)>m.

Now we prove (3.16). We recall from [11] that, if A(s} is of the form
(3.7), we have, for # even.

‘4(11)) ‘4(11)4(13/1) “ ("‘Nt IN/)®‘§2NQ|

= -]y ! Z Z (— 1)t &

S o p 0 L AR 204 1]

XX, (1) X, ) pX, U )X ()

@ T, 1) $(T, 0, ) 1N HT, o, ) (T

v,
[ fon o1 om0

Ti

),

where 3,5, 1, extends to the 27 = ordered (21 + 2)-tuples (i, i), 4 ;)
such that {iy....f,, ] coincides with [0...2z+1} as a set, and
fg< o <ig.dy,,> " >1Iy,,,. Then we have (cf. [12])

Ag (1) Ay Ay ,) A, e @ 12)(2])
:(71)”‘1 Z Z (71)3»70I k
T LI Bl B P i |

x X, (1) ..‘X’/‘A(I“\)/)/Y/u\,\(,’r’\~1).”X/Q,,,,([’erl)

x <¢( f[’A . l./“k 1 ) o (/5( T":,y . l‘/‘jn ot ) ¢( '1"1()0/11}) i ¢( T

QT
LN (317)
where the “quasi-truncated™ correlation function {---»“" is obtained by
first expanding the correlation function @wg(---) as a sum of products of
two-point functions, using formula (3.3) or the similar one without (sgn p),
and then deleting the contributions of the terms for which there is an m

such that all the time variables {7,,.,¢,} and all the time variables
U i 1seees T2y 1 | are paired among themselves For n odd, the left-hand side

of (3.17) would vanish because of (3.2).

We parametrize the 4"+ ordered (2n + 2)-tuples appearing in 3,4 5, 4 1
by permutations n of {0..,2r+1} such that (n(0)..,n(2n+1))=
(I4 o qseendag 10 Lyeees i) Let 2 be the set of those permutations p of
10,... 2n+ 1} such that p(2q) < p(2q+1), p(2¢9) < p(2¢ +2) for all ¢ and
such that for each m=1..., 2n there is at least a §=g(m, ) such that
np(2q) <m. wp(2G+ 1) > m. Then we have, in analogy to (3.3),

l <¢ eI /-uli] o (p( Tfn(ln + lll:/vuln - ln) >QT{
S Z n 1 <¢( T/np(lqlr/n/v(:ql) ¢( 7"1;;12(/ + Ill‘/n/ulq . H)>1’

pe P, q=0
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and using the bound (3.14) on the two-point functions we find

H
< Z n Kexp[ii([x/v(lqv_[rrp(?:/0 ll)]

pe P q=0

:[2”+1(”+])!] ! Z I_I Kexp[ia(ta(lqi—_[ﬂ(lqu1))]* (318)

TCSy, =0

independently of n, where S%,,, is the set of those permutations ¢ of
f0...., 2n+ 1} such that for cach m=1..., 2n there is at least a §=g(m)
such that ¢(2§) <m, a(2§+ 1)>m (cf. [2, Lemma (1)3.3]).

Now we majorize the norm of (3.17), using (3.18) and the fact that there
are 4"*' permutations 7 to consider. The result is the desired estimate
(3.16).

4. EXAMPLES

Examples of applications of the method of averaging to the problem of
the reduced evolution of an open quantum system can be found in [7, 8].
In [7], a charged harmonic oscillator is coupled to the quantized elec-
tromagnetic field in the dipole approximation; in [8], a finite number N of
energy levels of an impurity electron is coupled to the phonons of a crystal.
Neither model satisfies the ({c¢,}, «)-mixing condition. In [7], the reservoir
correlation function is divergent, and renormlization is required, and in
[8], exponential decay of the reservoir correlations is forbidden by the fact
that the phonons of a crystal have a finite maximum frequency. However,
in both cases one might introduce cutoffs and smearings which would make
the ({c¢,}, 2)-mixing condition hold; for the model of {8], the continuum
limit for the crystal should be taken, too.

Here we shall only discuss an extremely simple model, with the purpose
of  investigating  whether  the  maps  exp[(Z°G'? + A*'G')r].
exp[(A2G P 422G 1], (14 22M (1)) exp[(£2G'2 + 2*G'"")t] are trace-
and positivity-preserving. We know this to be the case for exp[A°G'*'1],
which is the same as in the theory of the weak coupling limit, but we have
no general argument to ensure a priori the positivity property of the
higher-order approximations.

We consider a two-level system S coupled to a boson or fermion reser-
vois R by an interaction Hamiltonian of the form

H,=a*®a(v)+a®a(v)*, 4.1)

where a*, a are the creation and annihilation (raising and lowering)
operators of the two-level system. satisfying aa* +a*a=1,, and where
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a(v)*, atr)y=4¢(c) + ig(iv)) are the creation and annihilation operators for
a reservoir particle with wavefunction ¢. We assume that H is of the form
ma*a for some real o, and that the reservoir is quasi-free (as explained in
Section 3}, so that we have

A= —i[a*®ale “"T,ey+a®@ale “'T,0)* ] (4.2)
Let Q be the positive self-adjoint operator on ¥ such that
La(v)*ale')y = (v/, Qr) forall v.v"in ¥, (4.3)
and assumc that Q is a function of T,, so that we have

[ e T Qe di=qU [H2) et R, (4.4)

s
where

U= e e Terdl vetjeR, (4.5)

and where ¢(-) is a positive function, 0 < ¢ < 1, in the fermion case.
We introduce some notation. For 4 in (%), let

L p)=ApA* = 1A*A, p}. pET (A, (4.6)
and et
1 oser s
k(ty=(v,e ""T,t)==— ' e " MDA dA, 4.7)
2nd o,

m(t)=alv)ale “"'T,vy*>

! B et (L 4 U (B d (48)

2nd
(the minus sign for fermions, the plus sign for bosons).

n(t)y= {alvy*ale "T,v))

L e gy A 49

2n)

In order to satisfy the ({c,},2}-mixing condition, we need the functions
k(). |m(1)], {n(1)] to be bouned by an exponential x exp[ —x |7]]; this is
essentially a condition on |8(4)|% in particular, the support of |#(4)|* must
be the whole real axis.
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THEOREM 6. For the model described aborve, we have

G =o)L, + 7N w) L— e (o) a*a. - ]. (4.10)

GV =2 w) L+ 7M@) Lo+ 75 0) L, — e () [a*a, -], (4.11)

G =539 L, + 7)) L+ 75 0) L, — i (o) [a*a, -], (4.12)
where

Pw)=(1Fg(w)) |#(w)]?  (—for fermions, + for bosons), (4.13)

ﬂﬂmzmmwmw. (4.14)
5 1 At s (2 (2} ~
dMw)=—— 4 ,(—H_Ld/“ 415)
m o A—w
4 = ~(2) ! (2)
TP w) =7 w) == (o)
)

I e () .
—==# | —— di— [ (@) + 7P (w)] (4.16)
2n A—w  dw
b 20 a(2)
() ﬁw»ziﬁ*ww/ '*%l&VWUu
oo 205y a2,
— 7 Nw) 2 '-Md}), (4.17)
. (A—w)”

where # denotes the principal part of the integral. and where, for a fermion
reservoir,

I d 1 '
S =0, e (w) = — = | () =~ |éw)]? (4.18)
2 dw 4 i
and for a4 boson reservoir
e 2 D) )
T )= =2 ReJ=1 b o))y
T, (/.~(u)“
. R U I
+‘,’l,”((r))ﬂ.¢ ‘ R — dr.
1 P (2) 1
b [T g (4.19)
2 A—Ww
) | d - .o 2 a 4
M) = —z— e @Y —= (1 +2g(w))" |[&w)]* |=Im J, (4.20)
2 dw 4

640 45 4.2
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J= | | ) [m(—t)yn(sy+n(tym(—s)]s ds dt

+ ' | I [m(—1)m{u—s)+n(t)ym(s —u)] duds di. (4.21)

i 0y Ovy 0
We have also

MP(Hp = | { | \ ([a, pa* m(t)
LS L PR 0|

+ [a*, pa]n(ty+he)du— G‘:’p} ds. (4.22)

where p is a self-adjoint element of T ( #).

The proof of the Theorem is given in the Appendix.

We see that G'*' has the well-known form, and G'*', G'*! have the same
structure, in the case of a fermion reservoir; for a boson reservoir, the
fourth-order contribution to the generator is not quadratic in the creation
and annihilation operator. All operators G, M>)(1), G'*), G'* annihilate
the trace.

In order to investigate the positivity properties of the semigroups
Lexpl (G + 3G ) 120}, {exp[ (GG + %G )] 120} we shall
need the following Lemma, which is a spacial case of the results of [3.
Sect. 4].

LEMMA. Let G=7 L,+7, Lo+ ol e, —i0la*a. ], where v | v .
Yo, € are real numbers. Then exp[Gt], 1 >0, is completely positive if and only
iy . .. 70200 and iy positice if and only if A, oy, 20,

o= =200 )V I 4y, >0, then the semigroup {exp[Gt]:1=0} has
a unigue stationdty state pg, given by

po=1 4+, ' adt 4y, ata);
if' v, =7 =0, then the stationary states of texp[Gt]: 1201} are all the den-
sity matrices commuting with o .
Then we can prove the following
THEOREM 7. The SemIgroups lexp[(2°GY) + 2'G")]: 1 = 01,

fexp[(A2G + 2°G" " Y ]: 120 are completely positive for sufficiently small
+ under any of the following conditions:.

(a) 77 Nw). N w) are both different from 0,
(b) either yF(4) or v24) vanishes identically in 4.

(c) 2 (w)=7""Nw)=0.
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in the case of a fermion reservoir. For a boson reservoir, the semigroups are
positive in case (a) and completely positive in cases (b) and (c).

The stationary state of the semigroups is unique and faithful in case (a),
unique and pure in case (b), and any density matrix commuting with o in
case (c).

Proof. We use the explicit form of G*', G, G'* and the Lemma. It is
clear from (4.13), (4.14) that 7'7'(w) are non-negative, hence, if they are
both non-zero, then +2(w)+ i *(w). () + A% (w) are strictly
positive when 4 is sufficiently small; if A (w) does not vanish, still it is
small enough to ensure positivity. This proves the statement for case (a). In
case (b), we see that y'(w), 7'P(w) vanish if 3(4) is identically zero
(upper or lower signs must be taken together), and also 7{*(w) vanishes. In
case (c), also yP(w), y'P(w) vanish, and one can see from (4.19) that
v§9(w) is non-negative. The result follows, using the Lemma.

Remarks. Condition (b) holds when the reference state of the reservoir
1s the vacuum, with g(4)=0 for all 4, or also, in the fermion case, when
g(A)=1 for all 2. When the reference state of the reservoir is KMS at some
inverse temperature ff € R, then either condition (a) or condition (c¢) holds,
depending on whether |#{w)|’ >0 or |#(w)|*=0. In case (a), it need not be
the case that the stationary state of exp[{(A°G"'+i*G")t], or of
exp[(A°G?' + 2*G")t]. is the canonical state at inverse temperature f for
the free dynamics of the system; in general, it depends on the coupling con-
stant ~ and on the form of the function {#(-)|°, and it approaches the
canonical state exp[ — flwa*a]/tr{exp[ — Bwa*a]} in the limit as A — 0.

In the case of a boson reservoir, it is possible to have 7{*(w) =0 under
condition (a), then the fourth-order semigroup is positive but not com-
pletely positive.

We have no general method to prove positivity of the maps (1+
AM2(1)) exp[(APG2'+ 2*G')t]. In the special case of a fermion reservoir
with a constant ¢(4), we are able to give a proof through a different
method, which we shall now describe.

When the reservoir is made of fermions, one might assume that the
creation and anihilation operators of the reservoir anticommute with ¢ and
a*; this can be obtained by representing a{v), a(v)® on H#.® #; as
g,®a(r), o,®a(e)* and letting

H,=a*a(v)+u(v)*a=a*0,® a(v) +c,a@ a(v)*
—(a*®@a(v)+ a®a(v)*). (4.23)

If

The sign of H, is irrelevant as far as the reduced dynamics of S is concer-
ned, and the results of the previous discussion remain unchanged. But now

640 45 4.3*
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an alternative approach becomes possible: the composite system S+ R is a
quasi-free fermion system. and its dynamics is the second quantization of a
group ol unitarics on a Hilbert space. If we denote by ¢ a unit vector.
orthogonal to 7 . and by D the infinitesimal generator of {T,:re R!, this
group of unitaries 1s [exp[iw |e>{el + 2(le> el + e yle])+ D)) te R}
on Ce@® 7 . In the interaction picture. we obtain the equation

d . .
— )y =2A(1) (1)
dt

in Ce@® 1. where

A([):/'((, it ‘(,><T /l<%+()ltu/

T 0> Cel) (4.24)

The application of the averaging method to this Hilbert space problem is
extremely simple, since 4,,(¢) vanishes identically. Strictly speaking, the
{1¢, ). 2)-mixing condition is not really necessary. and it suffices that
f& tk(2)] 1 dr exists for all positive r. Straightforward computations, similar
to those in the Appendix, lead to the following

THEOREM 8. There iy a positive function f4(°). bounded on compacts,
such that

[P, F Ay — (1 + 2 m P expl (27 + g™ ]el < Bai’r), (4.25)
where f,=c. Py=1c)><{c|, and where

) e I 5 s
¢ =—1 Kndi= -~ 5 [E(e)]” + ie' Nw).

Y0 -

m' ()= | kis)s ds + | , (1—s)k(s)ds

<

e — i {w) ’
N d (] o N
P =gmP )= i (E [}~ — 1{:“’((1))) _

Assume (8(w)] > 0. Then lexp[(A7g + g™ < | for all 1>0, at least
for A sufficiently small; as a consequence. also |(1+ 2°m'>(1)) exp[ (g +
Mg < L, at least for i sufficiently small and 1 sufficiently large. Then,
for each g in [0, 1], there exists a completely positive quasi-free map [13]
on LHy), denoted by Z7,, such that

B q.f?

Z: (a*y=(1+2"m (1)) exp[(A7g"" + Mg Ja*

ot
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and
lim Z; (a*a)=ql.
= x
By inspection, one sees that, if ¢(Z)=q for all 4 in R, then Z}  is the dual

map of (14 22M2(1)) exp[(A°G"* ’+/4G‘4) )t 1. defined by (4.10), (4.11), and
(4.22): this proves complete positivity of the latter map. No such result holds
when g(4) Is not constant.

This situation should be contrasted with the weak coupling limit theory
for quasi-free systems (see, e.g., [14]). It is completely equivalent to per-
form the weak coupling limit on the evolution equation for density
matrices or on the underlying equation on the test function space, irrespec-
tively of whether ¢(4) is constant or not, and ¢(4) affects the reduced
dynamics in the weak coupling limit only through its value at 4 =w. When
higher-order corrections are considered, the methods of [14] allow one to
obtain norm estimates on P, f*(¢) — 15(t) from estimates of the form (4.25)
on the test function space only when ¢(+) is constant, and the form of ¢(/)
becomes important, as is apparent from (4.16), (4.17). This is connected to
the phenomenon that might be called “quantum thermal memory”: if
|#(w)|* depends on an additional parameter ¢ and tends to a constant when
¢ goes to zero, then the semigroup approximation to P, f*(¢) becomes exact
if the reservoir is in the vacuum state (¢=0), but it does not when the
reservoir is in a KMS state at some inverse temperature § € R. Accordingly,
when |#(w)|” tends to a constant, m'*'(¢) vanishes, but M“?'(¢) does not,
when ¢(7) is not constant.

APPENDIX: ProofF oF THEOREM 6

We have

K3(1)p = [pa*, a]l m(t) + [pa, a*] n(1} + h.c.,

so that K'*'(1) commutes with the free evolution. Then we get

{La, pa* ] m(t)+ [a*, pa] n(t)+hc.} di,

[ pa*, a]l m(s)+ [pa, a*] n(s)+ h.c. |s ds.
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We compute GPM P (), MP(« )G, to find

Gllil,wtl)(‘ﬁ/v )p: ‘ »

Yr=0%Y .0

{La. pa* ] m(tym(s)+ hc.

+ (apa* — a*apa*a)[2 Re[m(1) m(—s)]
+ 2 Ren(t)2 Re m(s)]
— aa*pa*a[m(t)yn(—s)+n(—tym(s)]} sds dt
++ =),
wherc (+ = —) denotes a similar expression, with a,a*;m, n
interchanged,

| [ pa*] m(1) m(s)+ he.

Yra0Ys =0

M) G =

+ (apa* — a*apa*a)[2 Re[m(—t) m(s)]

+ 2 Rem(r) 2 Re n(s)]

— aa*pa*aln(—¢) m(sy+m(t)n(—s)]}s ds dt
+(+ =)

so that

L3

(6™ M3 )lp=] [ (2Ren(2Remix)

e vy -0

2 Rem(1)2 Re n(s))s ds dr

X (apa* —a*apa*a — a*pa+ aa*paa*).

Now we add and subtract —3{a*a, p} + ${aa*, p}, to obtain
apa* —a*apa*a —a*pa —aa*paa* = L,p — L p — Lsp+ L, p,
and use L .= L., to find

s ror

(2 Re n(1)2 Re m(s)

(G M ()] =

Yr=0Y5=0

— 2Rem(r)2 Ren(s))s ds di(L,— L)

Also K'™'(f) commutes with the free evolution, and we must compute
fo K'1)dr. For a fermion reservoir, the result is
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.

[" Kk pa=| j

0 t=0v5=0

f\ {La, a*pln(—1)ym(u—s)+hec

w=10
— a*apaa*(n(tym(s —u)+n(u—s)ym{—1))
+ (a*apa*a —apa*) 2 Re[m(t) m(u—s)+m(t —u) m{ —s)

+n(u—tym(—s)]+(+ = — )| dudsdr; (A.1)

whereas for a boson reservoir there is an additional term, given by

Za*apaa*Jr [ f {n(tym(u—s)+n(s) mlu—1)
1=0"s=0"u=0

+m(—t)yn(s—u)+m(—s)n(t—u)

+alt)mls—u)+m(—tyn(u—s)} dudsdt+(+ = —).

Due to the presence of the operation (+ = —), we may replace
—a*apaa*[n(t)ym(s —u)+ n(u—s) m(—1t)] with —a*apaa*n(t) m(s—u)—
aa*pa*an(—tym(u—s) in (A.l1); using the anticommutation relation
aa* + a*a=1 we find

(A.1)=(a*apa*a~apa*)2Rer j j {mt) miu—s)
=0Y=0"u=0

;=

+m{t—u)ym(—s)+n(u—t)ym(—s)+n(—t)ymu—s)} dudsdt

= (a*apa*a — apa*)

><2Refy J” {m(tym(—s)+n(—1)m(—s)}t dt ds,
=0

s=0
where we have used the identity

S

[ 10 gls— 0+ fr—u) g(s)) duds ds

Yi=0Yy=0"u=0

- [[ f(e)e de jﬂ b g(s) ds, (A.2)

Y0 0

which can be proved in the same way as the corresponding identity (4.15)
of L.

The additional term for bosons can be worked out by taking into
account the fact that the interchange (+ = —) is the same as hermitian
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conjugation for it, and by using «¢*apaa® = a*ap — u*apa*a and the iden-
tity (A.2) once again. The result is

—2ReJL ,p+iImJ[a*a, p], (A.3)

where J has been defined in (4.21).
So we find, for a fermion reservoir,

Gy = ' ’ ‘ ' La. pa* ] mit) m(s)+h.c.

CYre v
~ a*apaa*(m(— 1)y n(s) + n(t) m(—s)) + (apa* — a*apa*a)
X [m(t)yn(—s)+m(—tyn(s)]+(+ = —)|sdsdt
= | | tapa* 2 Re[m(r)(m(s)+n(—3))]
Yy DYy 0
+ a*paln(t)(n(s)+m(—s)) ] —a*apm(—t)(m(—s)+ n(s))
— aa*pn(—O)(n{ —s)+m(s)) — pa*am(t)(m(s) + n(—s))
— paa*n(1)(n(s) +m(—s)) }s ds dt,

and for a boson reservoir we must add the term (A.3).
Then the announced results (4.10}-(4.22) are found by using the foliow-
ing calculations:

1 AR 1 7 ) ) L
m(t)dt= i [“J et dt} (I Fg(A)) [6(2)]" dA
Y0 S 2rd0
im [ (1 F ) 1)
= o — ) 1B(4)] 7 ¢
;:lln(} 2nd , A—w+ie +d
g Ly (LFg(A) 18R]
:§(1+61(U)HU(0)) +§-‘J)J ) ——/:-dﬂ
I A AL V73 I
= 12, —p di:
2 (())+2 ' , A=
' r “ 1 "’ - A2y 2 N
‘ n(l)dt=" L— e " "”’dtJ g(A) |6(A))° d2
0 v 27%:,:,()
tim == [ g 167 d
= - ~ (A
t:lPJZnJ y /".—(Av)fiec‘((/L ‘
‘ oo g A
1 s }"5’(/&)

dz;

__*} : -
207 2n ), Ao
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+ 7

- [ " . -
‘ n1($)s ds = — \ U e’ Py ds] (T FgA)) e(4)] " da
?T{ Ve =0 B

©0 iny

s

=i— m(t) dr
aa Jo
1 d o+ 3 id
= — - dr 4+ = — W)
21 dow . , A=W 2dw’
1 fo A = D) i d
=—— —_—— di+ = —— 52 e):
2n . , (A—w)? 2do’ ()
t 1 (+’ s (A s )
{ nis)s ds:;—— e’ sds | g(a) |8(A))" da
Y0 LT Vs 0
d -
= ~i— n(t)dt
(/(U Y0

1 d + ol id o
= ——— J s di—=—I(w)
2n d(u . A=W 2dw
1 () D) | Pd
=—— ‘ )i—(ﬁ)—f—,-(——)d/v———y‘;’(w)
2 J (A —w)” 2 do

(L), v'2(2) are non-negative for all 4, and if they vanish at w, then also
thelr ﬁrst derivatives vanish at w. To compute Re J, we use the notation

a A -, | croglp)
f(i)= . e " f(rydr, (,/fg)(/v):%#’ ' :(i/, du

and we find

2ReJ=2 Re(M m(—1)dt ' ’ H(s)s ds

YO Y0

~L ~t ~N

+ J I | m(t)n(u—s)dudsdr>+(m:n)

t=0%s -0 u=0

= —m(ON A# A)0) + (H#M(0)) A0

2J i Hi(A) A(u)

X [JU e s gy diJ dAdu+ (m=n)
O wsias 1o s
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and with the usual kind of manipulations, this becomes

1
—p

ta

wn

i 2[0) H0) — i A) A — 2) ] di+ (A #)(0) A0) + (A 2)(0) #(0)

S Pw) @) = DA )
dA

p (2 —w)?

At '}v'z)(/: . | l
. )(/A-l-}""((u)gv,’/’

~ 2303
1 ' ooyl )(/v)
2 4, i—w n )L, A—o

di.

REFERENCES

. A. Frigerio, J. T. LEwis, axD J. V. PULE, The averaging method for asymptotic

evolutions. I. Stochastic differential equations, Adv. in Appl. Math. 2 (1981), 456-481.
E. B. Davies. Markovian master equations, Comm. Math. Phys. 39 (1974), 91-110; 11,
Math. Ann. 219 (1976), 147-158: HI, Ann. Inst. H. Poincaré Sect. B 11 (1975), 265-273.

. V. Gorint, A. FriGrrio. M. Verri. A. Kossakowskl, aND E. C. G. SupARSHAN, Proper-

ties of quantum Markovian master equations, Rep. Math. Phys. 13 {1978), 149-173.

. H. Sponn axD J. L. LEBowITZ, [rreversible thermodynamics for quantum systems weakly

coupled to thermal reservoirs. Adr. in Chem. Phys. 38 (1978), 109-142.

. H. Spoun, Kinctic equations from Hamiltonian dynamics: Marovian himits, Rer. Modern

Phys. 53 (1980), 569-615.

. G. W, Forp, J. T. Lewis, anp J. R, McConneLL, Rotational Brownian motion of an

asymmetric top. Phys. Rer. 4 19 (1979). 907-919.

. G. W. Forp anp J. T. LEWIS, A Bethe-type calculation of the Lamb shift for the harmonic

oscillator, in preparation.

. A, Barcmipein, E. Murazzy, axp G Parravicint “Open System  Approach to

Jahn-Teller Systems.” Preprint LF.U.M. 251/F.T.. University of Milan, 1980.

. T. Kato, “Perturbation Theory for Linear Opecrators,” Springer-Verlag, Berlin/

Heidelberg/New York, 1966.

. E. B. Davis anp J. P. EckManN, Time decay for fermion systems with persistent vacuum,

Helr. Phys. Acta 48 (1975), 731 742,

. V. GOrRINE AND AL KOsSAKOWSKL N-Level system in contact with a singular reservoir, J.

Math. Phyvs. 17 (1976), 1298 1305.

. A, FriGerio. C. NOVELLONE, AND M. BirRI, Master equation treatment of the singular

rescrvoir imit. Rep. Math. Phys. 12 (1977), 275-284.

. D. E. Evans. Completely positive quasi-free maps on the CAR algebra, Comm. Math.

Phys. 70 (1979). 53-60.

_ A. FRIGERIO, V. GORINI, AND J. V. PULE, Open quasi-free systems, J. Statist. Phys. 22

(1980), 409-433.



